# Theoretical Studies of the Hydration of Metaphosphate with One, Two, and Three Molecules of Water ${ }^{1}$ 

Yun-Dong Wu ${ }^{\boldsymbol{*},}$ and K. N. Houk ${ }^{\ddagger}$<br>Contribution from the Departments of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, and University of California, Los Angeles, Los Angeles, California 90024

Received July 27, $1993^{*}$


#### Abstract

The reactions of metaphosphate anion $\left(\mathrm{PO}_{3}{ }^{-}\right)$with one, two, and three molecules of water have been studied theoretically with up to $6-31+\mathrm{G}^{*}$ geometry optimizations and MP4/6-31+G** energy evaluations. $\mathrm{H}_{2} \mathrm{O}$ forms a planar six-membered cyclic hydrogen-bonded complex with $\mathrm{PO}_{3}{ }^{-}$. The addition of a second $\mathrm{H}_{2} \mathrm{O}$ forms a second ring. The calculated complexation enthalpies and entropies for these two processes match reasonably well with those observed experimentally for the gas-phase reactions (Keesee, R. G.; Castleman, A. W., Jr. J. Am. Chem. Soc. 1989, 111, 9015). For the addition of a third $\mathrm{H}_{2} \mathrm{O}$, several isomeric complexes have been located. The complex with the $\mathrm{H}_{2} \mathrm{O}$ nearly perpendicular to the $\mathrm{PO}_{3}-\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ complex is found to be the most stable at each level of optimization. The calculated entropy change with this structure agrees well with the reported value of the third-step hydration in the gas phase. A four-centered transition structure is found for the conversion of the complex to dihydrogen orthophosphate for each reaction. The transition structure involves considerable breaking of one of the water $\mathrm{O}-\mathrm{H}$ bonds and has a barrier of activation of about $20 \mathrm{kcal} / \mathrm{mol}$ with respect to the reactants. For the hydration with two and three water molecules, a six-membered-ring transition structure is also located which is more stable than the four-centered transition structure by several kilocalories/mole.


Metaphosphate, $\mathrm{PO}_{3}^{-}$, was first proposed by Westheimer and Bunton about 40 years ago as an intermediate in the aqueous solvolysis of phosphate monoesters, based on the pH -rate profiles. ${ }^{2}$ This has attracted tremendous interest because the reaction is one of the most important reactions in biological systems. ${ }^{3,4}$ Recent kinetic and stereochemical studies suggest that these reactions do not generate completely free metaphosphate intermediates, ${ }^{5-7}$ at least in protic solvents. Experiments in aprotic media have suggested the existence of free metaphosphate. 8,9

While metaphosphate has been suggested to be extremely reactive in aqueous solution, it is quite stable in the gas phase. ${ }^{10}$ For example, Henchman et al. reported that it does not react

[^0]with a variety of nucleophiles such as $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{CH}_{3} \mathrm{CN}$, and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$ in the gas phase ${ }^{11}$ and is one of the weakest bases. ${ }^{12}$

Recently, Keesee and Castleman reported the measurement of the standard enthalpy, entropy, and free-energy changes for the successive addition of water or deuterated water to $\mathrm{PO}_{3}{ }^{-}$in the gas phase (Table I). ${ }^{13}$ They observed that both the enthalpy and entropy changes of the third hydration step ( $n=2$ ) are quite different from those of the first, second, and fourth hydration steps. ${ }^{13}$ They suggested that $\mathrm{PO}_{3}$ - undergoes simple ion-molecule cluster formation up to the second hydration step but the third hydration step involves an isomerization of the ion-molecule cluster into the dihydrate of the dihydrogen orthophosphate anion $\left(\mathrm{PO}_{4} \mathrm{H}_{2}{ }^{-}\right)$. This reaction is rationalized to become facile due to the assumption that additional $\mathrm{H}_{2} \mathrm{O}$ molecules reduce the activation energy for the isomerization. ${ }^{13}$
Several questions spring to mind: (1) Why is metaphosphate kinetically stable in the gas phase? (2) What is the effect of additional water molecules ("solvent effect") on the reactivity of $\mathrm{PO}_{3}{ }^{-}$? and (3) Why is the third step of the hydration of $\mathrm{PO}_{3}{ }^{-}$ abnormal?

We report here a theoretical study of the reactions of metaphosphate with one, two, and three water molecules. ${ }^{14,15}$ Detailed information about the reaction pathway, geometries of ion-molecule clusters, dihydrogen orthophosphates, and transition structures for the formation of dihydrogen orthophosphates is obtained.

[^1]Table I. Standard Enthalpy, Entropy, and Free-Energy Changes for the Successive Addition of Water to Metaphosphate in the Gas Phase ${ }^{a}$

$$
\mathrm{PO}_{3}^{-} \cdot n \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{PO}_{3}^{-} \cdot(n+1) \mathrm{H}_{2} \mathrm{O}
$$

| $(n, n+1)$ | $-\Delta H^{\circ}{ }_{n, n+1}$ <br> $(\mathrm{kcal} / \mathrm{mol})$ | $-\Delta S^{\circ}{ }_{n, n+1}$ <br> $(\mathrm{cal} /(\mathrm{mol} \mathrm{K}))$ | $-\Delta G^{\circ}{ }_{n, n+1}$ <br> $(\mathrm{kcal} / \mathrm{mol})$ |
| :---: | :---: | :---: | :---: |
| $(0,1) \mathrm{H}_{2} \mathrm{O}$ | $12.9 \pm 0.3$ | $22.2 \pm 1$ | 6.3 |
| $(0,1) \mathrm{D}_{2} \mathrm{O}$ | $12.6 \pm 0.2$ | $20.8 \pm 1$ | 6.4 |
| $(1,2) \mathrm{D}_{2} \mathrm{O}$ | $11.4 \pm 0.2$ | $22.0 \pm 1$ | 4.9 |
| $(2,3) \mathrm{D}_{2} \mathrm{O}$ | $16.3 \pm 0.2$ | $36.3 \pm 1$ | 5.5 |
| $(3,4) \mathrm{D}_{2} \mathrm{O}$ | $11.0 \pm 0.4$ | $22.5 \pm 1$ | 4.3 |

${ }^{a}$ Data taken from ref 13.

## Results and Discussion

Calculations were performed with Pople's GAUSSIAN88 and GAUSSIAN92 programs. ${ }^{16}$ Geometry optimizations were carried out with AM1 and with ab initio calculations with the 3-21G* basis set and the $6-31+G$ basis set to which a set of additional d orbitals was added on the phosphorus. This is referred to as $6-31+G\left({ }^{*}\right)$. The energies were also evaluated with the MP2/ $6-31+\mathrm{G}^{*}$ calculations on the $6-31+G\left({ }^{*}\right)$ geometries. Harmonic vibrational frequency calculations were performed with AM1 and with ab initio calculations with the 3-21G* and $6-31+G\left({ }^{*}\right)$ basis sets. Each transition structure was confirmed to be a saddle point on the potential energy surface from the vibrational frequency calculations. Each cluster or phosphate product corresponds to an energy minimum with no imaginary frequency. For the reaction of $\mathrm{PO}_{3}-$ with one molecule of water, the geometry optimizations and the frequency calculations were also performed with the $6-31+G^{*}$ basis set and the energies were evaluated with MP4/6-31+G** calculations.

1. Reaction of $\mathrm{PO}_{3}{ }^{-}$with One Molecule of Water. The calculated total energies of the reactants, the ion-molecule cluster ${ }_{1}$ the dihydrogen orthophosphate anion, and the transition structure for the formation of the product are given in Table II. Table IV collects the zero-point energy (ZPE), the thermal energy at 298 ${ }^{\circ} \mathrm{C},{ }^{17}$ and the entropy of these species. In Table V are the calculated relative energies, enthalpies, entropies, and free energy of the cluster, transition structure, and phosphate product with respect to the reactants (see Scheme I).
$\mathrm{PO}_{3}-$ forms a cyclic ion-molecule cluster with $\mathrm{H}_{2} \mathrm{O}$, as shown by 1. This is the only stable complex on the potential energy surface, although AM1 calculations also gave an acyclic hydrogenbonded species. ${ }^{14}$ In general, the complexation energy ( $\Delta E_{1}$ ) calculated by AM1 is too low, while $\Delta E_{1}$ by $3-21 G^{*}$ is too high. This is also true for the two- and three-water systems. Correlation energy corrections increase the complexation energy by about 2 $\mathrm{kcal} / \mathrm{mol}$. The final estimation of enthalpy change (MP4/6$31+G^{* *} \Delta E_{1}$ with $6-31+G^{*}$ thermal energy corrections) and the entropy change ( $\Delta S_{1}, 6-31+G^{*}$ ) for the complexation are -14 $\mathrm{kcal} / \mathrm{mol}$ and $-26.2 \mathrm{cal} / \mathrm{mol} \mathrm{K}$ (Table V), respectively. These compare quite favorably with the experimental values of -12.8 $\mathrm{kcal} / \mathrm{mol}$ and $-22.3 \mathrm{cal} / \mathrm{mol} \mathrm{K}$, respectively.

The transition structure for the conversion of the ion-molecule cluster to the orthophosphate anion is shown by 2. In this fourcentered transition structure, the forming O-P bond is $1.98 \AA$, about $0.35 \AA$ longer than a O-P single bond. The breaking $\mathrm{O}-\mathrm{H}$

[^2]Scheme I

bond and the forming $\mathrm{O}-\mathrm{H}$ bond are 1.13 and $1.26 \AA$, respectively. There is, however, only about $20^{\circ}$ of pyramidalization at the $P$ atom. The $3-21 \mathrm{G}^{*}$ basis set significantly underestimates the activation energy. The best estimated activation enthalpy $\left(\Delta H_{2}\right)$ and entropy ( $\Delta S_{2}$ ) are about $10 \mathrm{kcal} / \mathrm{mol}$ and $-35 \mathrm{cal} / \mathrm{mol} \mathrm{K}$, respectively, calculated from the reactants $\mathrm{PO}_{3}{ }^{-}$and $\mathrm{H}_{2} \mathrm{O}$. The overall free-energy barrier $\left(\Delta G_{2}\right)$ is $20.3 \mathrm{kcal} / \mathrm{mol}$, which is sufficiently high to prevent a gas-phase reaction where the concentration of the reactants is low. Because there is a large loss of entropy, the activation barrier is expected to increase with increased temperature. This is in accord with the observed kinetic stability of the metaphosphate anion in the gas phase. ${ }^{10,11}$
The optimized dihydrogen orthophosphate is shown by 3 . The $\mathrm{P}(\mathrm{OH})_{2}$ unit is in a $\mathrm{G}^{+} / \mathrm{G}^{+}$conformation to avoid electrostatic repulsion. ${ }^{18}$ AM1 and $3-21 \mathrm{G}^{*}$ give significantly larger exothermicity compared to other levels of calculations (Table V). The best estimated relative enthalpy ( $\Delta H_{3}$ ) and entropy ( $\Delta S_{3}$ ) of this species with respect to the reactants are $-23 \mathrm{kcal} / \mathrm{mol}$ and -35 $\mathrm{cal} / \mathrm{mol} \mathrm{K}$, respectively. This further supports the experimental assessment that the first hydration step involves the formation of an ion-molecule cluster rather than a dihydrogen orthophostate. ${ }^{13}$
2. Ion-Molecule Clusters of $\mathrm{PO}_{3}{ }^{-}$with Two and Three Molecules of Water. Starting from 1, the addition of a second $\mathrm{H}_{2} \mathrm{O}$ forms a stable bicyclic structure, 4. We could not locate any other stable clusters for this system at the $6-31+G\left({ }^{*}\right)$ level of calculation, The calculated enthalpy and entropy changes of this second hydration step are $11.4 \mathrm{kcal} / \mathrm{mol}$ and $-29.2 \mathrm{cal} / \mathrm{mol}$ K (Table V), respectively. These are in reasonable agreement with Keesee and Castleman's measured values for the second hydration step (Table I). ${ }^{13}$ The complexation energy drops slightly at each level of calculations relative to that of the first hydration step because the presence of the first water reduces the negative charge on the third O atom of $\mathrm{PO}_{3}{ }^{-}$.
When a third water was introduced, a tricyclic structure, 5, was first located. The calculated enthalpy and entropy changes for the formation of this structure from 4 are $-10.8 \mathrm{kcal} / \mathrm{mol}$ and $-28.8 \mathrm{cal} / \mathrm{mol} \mathrm{K}$, respectively. These values are expected by analogy to those of the first and second steps of hydration but are quite different from the corresponding ones for the third step of hydration shown in Table I. ${ }^{13}$
Several other structures, 6-8, were subsequently located for this trihydrate. In structure 6, one of the waters is nearly perpendicular to $\mathrm{PO}_{3}-$. The two HO bonds of this water are eclipsed with two of the PO bonds and form hydrogen bonds with the two other waters. The two side waters each use one HO bond to form a hydrogen bond. ${ }^{19}$ Because of the hydrogen bonding, the perpendicular $O$ becomes more nucleophilic. Structure 7 is similar to 6, but the perpendicular $\mathrm{H}_{2} \mathrm{O}$ is staggered with respect to $\mathrm{PO}_{3}{ }^{-}$. The two side waters each form a cyclic structure with $\mathrm{PO}_{3}{ }^{-}$but also have hydrogen bonding with the perpendicular $\mathrm{H}_{2} \mathrm{O}$. In structure 8, the three waters form a cage structure with $\mathrm{PO}_{3}{ }^{-}$. Among these structures, structure 6 has the lowest energy at each level of optimization (Table III; AM1, 3-21G*, and $6-31 G+G(*)$ ). However, the MP2/6-31+G* calculation with the $6-31+G\left(^{*}\right)$ geometries gave a $7 \mathrm{kcal} / \mathrm{mol}$ preference for structure 5 over structure 6. The calculated geometry of structure
(18) Ewig, C. S.; Van Wazer, J. R. J. Am. Chem. Soc. 1985, 107, 1965.
(19) A structure with one of the non-hydrogen-bonded HO bonds oriented in the other tetrahedral direction was also fully optimized. This structure is about half a kilocalorie/mole less stable than structure 6.

Table II. Calculated Energies (-au) of the Species Involved in the $\mathrm{PO}_{3}-\mathrm{H}_{2} \mathrm{O}$ Hydration Reaction

| basis set | $\mathrm{PO}_{3}{ }^{-}$ | $\mathrm{H}_{2} \mathrm{O}$ | $\mathrm{PO}_{3}{ }^{-} \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{PO}_{3}{ }^{-} \mathrm{H}_{2} \mathrm{O}$ TS | $\mathrm{PO}_{2}-(\mathrm{OH})_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AM1 | 0.16318 | 0.09443 | 0.27614 | 0.24800 | 0.32878 |
| 3-21G* | 562.55196 | 75.58596 | 638.17446 | 638.15379 | 638.22377 |
| $6-31+\mathrm{G}\left({ }^{*}\right)$ | 565.37236 | 75.99306 | 641.39014 | 641.33887 | 641.42173 |
| $6-31+\mathrm{G}^{*} / / 6-31+\mathrm{G}{ }^{*}$ ) | 565.43130 | 76.01774 | 641.47097 | 641.41374 | 641.49638 |
| MP2/6-31+G**/6-31+G(*) | 566.10162 | 76.20874 | 642.33566 | 642.29183 | 642.34983 |
| $6-31+\mathrm{G}^{*}$ | 565.43152 | 76.01774 | 641.47230 | 641.41845 | 641.49907 |
| $6-31+\mathrm{G}^{* *} / 6-31+\mathrm{G}^{*}$ | 565.43152 | 76.03118 | 641.48519 | 641.43306 | 641.51261 |
| MP2/6-31+G**//6-31+G* | 566.09944 | 76.23262 | 642.35772 | 642.31967 | 642.37584 |
| MP3/6-31+G**/6-31+G* | 566.08143 | 76.23727 | 642.34421 | 642.30330 | 642.36799 |
| MP4/6-31+G**/6-31+G* | 566.12576 | 76.24412 | 642.39570 | 642.35593 | 642.41330 |



1


2


3

Figure 1. Ion-molecule complex (1), transition structure (2), and orthophosphate anion (3) of the reaction of the metaphosphate anion with one molecule of water. The bond lengths shown are $3-21 G^{*}, 6-31+G\left({ }^{*}\right)$, in parenthesis, and $6-31+G^{*}$, in brackets, values, respectively.


Figure 2. Calculated ion-molecule complexes of the $\mathrm{PO}_{3}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}(4)$ and $\mathrm{PO}_{3}-\cdot 3 \mathrm{H}_{2} \mathrm{O}(5-8)$ systems. Selected 3-21G* and $6-31+\mathrm{G}\left({ }^{*}\right)$ in parentheses, bond lengths are also shown.

6 is very basis-set dependent while that of structure 5 is much less basis-set dependent. Thus, whether $\mathbf{6}$ is more stable than 5 energetically still needs further study with higher basis sets and correlation. It is interesting that the calculated loss of entropy for structure 6 is about 16 eu larger than that for structure 5 . The calculated entropy change with structure 6 is not basis-set sensitive and is very close to that reported for the third step of hydration. ${ }^{20}$

While Keesee and Castleman pointed out the possibility of the formation of dihydrogen orthophosphate for the third step of hydration, ${ }^{13}$ Schaefer et al. suggested that the third step of hydration involves the formation of a mixture of the simple ion-

[^3]molecule cluster $\mathrm{PO}_{3}-\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(5)$ and the rearranged phosphate product $\mathrm{PO}_{4} \mathrm{H}_{2}-\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} .{ }^{14}$ Our calculations suggest that the third step of hydration in the gas phase forms a mixture of ion-molecule clusters including 5-8, with structure 6 dominant. As will be seen in the next two sections, the activation free energy for the formation of $\mathrm{PO}_{4} \mathrm{H}_{2}-\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ from structure 4 and one $\mathrm{H}_{2} \mathrm{O}$ is too high (about $18 \mathrm{kcal} / \mathrm{mol}$ ) for the reaction to occur in the gas phase; the formation of $\mathrm{PO}_{4} \mathrm{H}_{2}^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ is too exothermic compared to the experimentally observed enthalpy change. ${ }^{13}$ We can easily explain why the fourth step of hydration in the gas phase gives normal enthalpy and entropy changes. The addition of another $\mathrm{H}_{2} \mathrm{O}$ to structure 6 has to form another cyclic structure with $\mathrm{PO}_{3}{ }^{-}$.

Table 111. Calculated Total Energies ( -au ) of the Species Derived from the Reactions of Monophosphate with Two and Three Water Molecules

|  | AM1 | 3-21G* | $6-31+G\left({ }^{*}\right)$ | $6-31+\mathrm{G}^{*}$ | MP2/6-31+G ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{PO}_{1}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(4)$ | 0.38757 | 713.79262 | 717.40559 | 717.50840 | 718.56709 |
| $\mathrm{PO}_{1}{ }^{-\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}} \mathrm{TS}$ (9) | 0.36179 | 713.77659 | 717.35780 | 717.45483 | 718.52715 |
| $\mathrm{PO}_{1}{ }^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{TS}$ (10) |  |  | 717.38262 | 717.45964 | 718.53271 |
| $\mathrm{PO}_{2}{ }^{-}(\mathrm{OH})_{2} \mathrm{H}_{2} \mathrm{O}(13)$ | 0.44096 | 713.85086 | 717.44238 | 717.53798 | 718.58547 |
| $\mathrm{PO}_{1}^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)_{1}(5)$ | 0.49747 | 789.40712 | 793.41881 | 793.54379 | 794.79617 |
| $\mathrm{PO}_{1}{ }^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)_{1}(6)$ | 0.50073 | 789.44659 | 793.42001 | 793.52358 | 794.78498 |
| $\mathrm{PO}_{1}{ }^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)_{1}{ }^{(7)}$ | 0.50340 | 789.44319 | 793.41492 | 793.52998 | 794.79026 |
| $\mathrm{PO}_{1}{ }^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)_{1}{ }^{(8)}$ |  | 789.41407 | 793.41506 | 793.53848 | 794.79404 |
| $\mathrm{PO}_{1}{ }^{-}(\mathrm{H}, \mathrm{O})_{3} \mathrm{TS}(11)$ | 0.47391 | 789.39660 | 793.37520 | 793.49117 | 794.75748 |
| $\mathrm{PO}_{3}{ }^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)_{1} \mathrm{TS}(12)$ |  | 789.44605 | 793.40664 | 793.49855 | 794.76873 |
| $\mathrm{PO}_{2}^{-}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(14)$ | 0.55496 | 789.46992 | 793.46178 | 793.57650 | 794.81954 |

${ }^{a}$ Calculated with the $6-31+\mathrm{G}\left({ }^{*}\right)$ geometries.
Tahle (V. Calculated Zero-Point Ener8y (ZPE, kcal/mol), Thermal Energy ( $\Delta H^{a}{ }_{198}$, kcal/mol), and Entropy ( $S$, cal/mol K) of the Species (nvolved in the $\mathrm{PO}_{1}-\left(\mathrm{H}_{2} \mathrm{O}\right)_{n}$ Hydration Reactions

| species | AM1 |  |  | 3-21G* |  |  | $6-31+\mathrm{G}^{\text {* }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ZPE | $\Delta E^{\circ}{ }_{298}$ | $S$ | ZPE | $\Delta E^{\circ}{ }_{298}$ | $S$ | ZPE | $\Delta E^{\circ}{ }_{298}$ | $S$ |
| PO, ${ }^{-}$ | 5.8 | 8.4 | 64.3 | 8.1 | 10.3 | 61.3 | 7.8 | 9.9 | 61.3 |
| $\mathrm{H}_{2} \mathrm{O}$ | 12.8 | 14.6 | 45.1 | 13.7 | 15.4 | 45.1 | 14.4 | 16.2 | 45.0 |
| $\mathrm{PO}_{1}-\mathrm{H}_{2} \mathrm{O}(0)$ | 20.5 | 25.2 | 87.0 | 24.8 | 28.6 | 78.5 | 24.7 | 28.3 | 80.1 |
| $\mathrm{PO}_{1}{ }^{-} \mathrm{H}_{2} \mathrm{O}$ TS (2) | 20.0 | 23.4 | 73.8 | 23.1 | 26.0 | 70.8 | 22.7 | 25.7 | 71.3 |
| $\mathrm{PO}_{2}{ }^{-}(\mathrm{OH})_{2}$ (3) | 22.0 | 25.9 | 76.2 | 25.1 | 28.3 | 71.5 | 25.5 | 28.7 | 71.3 |
| $\mathrm{PO}_{1}^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(4)$ | 35.2 | 42.0 | 106.4 | 41.2 | 46.8 | 94.4 | 40.6 | 46.7 | 98.1 |
| $\mathrm{PO}_{1}^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ TS (9) | 34.7 | 40.2 | 92.2 | 39.7 | 44.3 | 86.3 | 38.9 | 43.7 | 87.2 |
| $\mathrm{PO}_{1}{ }^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{TS}$ (10) |  |  |  |  |  |  | 38.6 | 42.8 | 81.5 |
| $\mathrm{PO}_{2}-(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}($ (3) | 36.7 | 42.1 | 88.4 | 41.9 | 46.8 | 86.2 | 41.4 | 46.6 | 88.6 |
| $\mathrm{PO}_{1}{ }^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)_{1}(5)$ | 49.6 | 58.7 | 123.9 | 57.4 | 64.9 | 108.8 | 56.8 | 64.8 | 114.3 |
| $\mathrm{PO}_{1}\left(\mathrm{H}_{2} \mathrm{O}\right)_{1}(6)$ | 52.9 | 60.4 | 110.3 | 59.1 | 64.3 | 89.6 | 59.2 | 65.7 | 99.0 |
| $\mathrm{PO}_{1}^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)_{1}{ }^{(7)}$ | 53.2 | 60.4 | 104.9 | 62.0 | 67.3 | 89.7 | 59.5 | 66.2 | 101.9 |
| $\mathrm{PO}_{1}^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)$, (8) |  |  |  | 58.9 | 65.7 | 102.6 |  |  |  |
| $\mathrm{PO}_{1}{ }^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{TS}$ (11) | 49.4 | 56.9 | 111.4 | 56.5 | 62.8 | 100.2 | 55.3 | 62.0 | 104.0 |
| $\mathrm{PO}_{1}^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{TS}(\mathrm{(2)}$ |  |  |  | 57.3 | 62.2 | 87.4 | 55.7 | 61.4 | 93.2 |
| $\mathrm{PO}_{2}-(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}($ (4) | 51.5 | 59.7 | 115.0 | 58.2 | 64.9 | 102.4 | 58.1 | 65.1 | 105.5 |



9

(

$(0$


12

Fggure 3. Calculated transition structures fon the reactions of the metaphosphate anion with two and three molecules of water. Selecled 3-21G* and $6-31+G(*)$, in pareni heses, bond lengths are also shown.

## 3. Effect of Additional Water Molecules on the Transition

 Structure for the Formation of the Dihydrogen Orthophosphate Anion. Structures9 and (0 are calculated four-centered transition structures for the formation of the orthophosphate anion with two and three $\mathrm{H}_{2} \mathrm{O}$ molecules, respectively. In lhese two structures, there is no hydrogen bonding between the reacling $\mathrm{H}_{2} \mathrm{O}$ and the nonreacting waters and the nonreacting waters have little effect on the geometry of the four-centered unit.The hest estimated activatinn enthalpy and entropy are 1 (.2 $\mathrm{kcal} / \mathrm{mol}$ and $-37.3 \mathrm{cal} / \mathrm{mol} \mathrm{K}$ for the two-water syslem and (2. ( $\mathrm{kcal} / \mathrm{mol}$ and $-39.3 \mathrm{cal} / \mathrm{mol} \mathrm{K}$ for the three-water system. Therefore, the additional waler mo(ecules slightly increase the activation energy for the isomerization reaction with the fourcentered transition structure.

However, we were able to locate another transition structure with the $6-31+\mathrm{G}\left({ }^{*}\right)$ hasis set for lhe $\mathrm{PO}_{1}-\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ reaction, as

Table V. Calculated Changes in the Energy ( $\Delta E$, kcal/mol), Enthalpy ( $\Delta H^{\circ}{ }_{298}$, kcal/mol), Entropy ( $\Delta S$, cal/mol K), and Free Energy ( $\Delta G^{\circ}{ }_{298}$, $\mathrm{kcal} / \mathrm{mol}$ ) of the Complexation, Activation, and Overall Reaction of $\mathrm{PO}_{3}{ }^{-}$with One, Two, and Three Molecules of Water According to Scheme I

| basis set | $\Delta E_{1}$ | $\Delta H^{\circ}{ }_{1}$ | $\Delta S_{1}$ | $\Delta G^{\circ}{ }_{1}{ }^{\text {a }}$ | $\Delta E_{2}$ | $\Delta H^{\circ}{ }_{2}$ | $\Delta S_{2}$ | $\Delta G_{2}{ }^{\text {a }}$ | $\Delta E_{3}$ | $\Delta H_{3}$ | $\Delta S_{3}$ | $\Delta G_{3}{ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{PO}_{3}{ }^{-}+\mathrm{H}_{2} \mathrm{O}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| AM1 | -11.6 | -9.4 | -22.4 | -2.7 | 6.1 | 6.5 | -35.6 | 17.1 | -44.7 | -41.8 | -33.2 | -31.9 |
| 3-21G** | -22.9 | -20.0 | -27.9 | -11.7 | -9.9 | -9.7 | -35.6 | 1.0 | -53.9 | -51.7 | -34.9 | -41.3 |
| 6-31+G(*) | -15.5 |  |  | -5.5 | 16.7 |  |  |  | -35.2 |  |  | -22.2 |
| $6-31+\mathrm{G}^{*} / / 6-31+\mathrm{G}{ }^{*}$ ) | -13.6 |  |  | -3.6 | 16.4 |  |  |  | -29.7 |  |  | -16.7 |
| MP2/6-31+G*//6-31+G(*) | -15.9 |  |  | -5.9 | 11.5 |  |  |  | -24.8 |  |  | -11.8 |
| $6-31+\mathrm{G}^{*}$ | -14.5 | -12.3 | -26.2 | -4.5 | 19.4 | 19.0 | -35.0 | 29.4 | -31.3 | $-28.7$ | -35.0 | -18.3 |
| $6-31+\mathrm{G}^{* *} / / 6-31+\mathrm{G}^{*}$ | -14.1 |  |  | -4.1 | 18.6 |  |  | 28.6 | -31.3 |  |  | -18.3 |
| MP2/6-31+G**//6-31+G* | -16.1 |  |  | -6.1 | 9.2 |  |  | 19.2 | -26.1 |  |  | -13.1 |
| MP3/6-31+G**//6-31+G* | -16.0 |  |  | -6.0 | 10.5 |  |  | 20.5 | -30.1 |  |  | -17.1 |
| MP4/6-31+G ${ }^{* *} / / 6-31+\mathrm{G}^{*}$ | -16.2 |  |  | -6.2 | 10.3 |  |  | 20.3 | -25.8 |  |  | -12.8 |
| experimental $\mathrm{PO}_{3}-\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$ |  | -13 | -22 | -6 |  |  |  |  |  |  |  |  |
| AM1 | -10.7 | -8.5 | -25.7 | -0.8 | 5.5 | 5.8 | -39.5 | $17.6{ }^{d}$ | -44.2 | -41.9 | -34.7 | -31.6 |
| 3-21G* | -20.2 | -17.4 | -29.2 | -8.7 | -10.1 | -9.8 | -37.3 | $0.3{ }^{\text {d }}$ | -56.8 | -54.0 | -37.4 | -42.9 |
| $6-31+G(*)$ | -14.0 | -11.8 | -27.0 | $-3.8$ | $\begin{aligned} & 16.0 \\ & (0.4) \end{aligned}$ | $\begin{gathered} 15.1 \\ (-1.3) \end{gathered}$ | $\begin{gathered} -37.9 \\ (-43.6) \end{gathered}$ | $\begin{gathered} 26.4^{d} \\ (11.7)^{e} \end{gathered}$ | -37.1 -30.9 | -35.0 | -36.5 | -24.1 -17.8 |
| $6-31+\mathrm{G}^{*} / / 6-31+\mathrm{G}\left({ }^{*}\right)$ | -12.3 |  |  | -2.1 | $\begin{gathered} 21.3 \\ (18.2) \end{gathered}$ |  |  | $\begin{gathered} 31.7^{d} \\ (29.5)^{e} \end{gathered}$ | -30.9 |  |  | -17.8 |
| $\mathrm{MP} 2 / 6-31+\mathrm{G}^{*} / / 6-31+\mathrm{G}\left({ }^{*}\right)$ | -14.2 |  |  | -4.0 | $\begin{aligned} & 10.9 \\ & (7.3) \end{aligned}$ |  |  | $\begin{gathered} 21.3^{d} \\ (18.6)^{e} \end{gathered}$ | -25.8 |  |  | -12.8 |
| $\mathrm{PO}_{3}-2 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| AM1 | -13.5 | -9.7 | -31.5 | $-0.3{ }^{\text {c }}$ | 5.1 | 5.4 | -40.0 | $17.3 f$ | -45.3 | -42.2 | -36.4 | -31.4 |
| 3-21G* | -42.7 | -40.6 | -35.3 | $-30.1^{\text {c }}$ | -11.3 | -10.7 | -39.3 | $1.0{ }^{\circ}$ | -57.3 | -54.6 | -37.1 | -43.5 |
| 6-31+G(*) | $\begin{gathered} -12.7 \\ (-13.4) \end{gathered}$ | $\begin{gathered} -10.8 \\ (-12.0) \end{gathered}$ | $\begin{gathered} -28.8 \\ (-44.1) \end{gathered}$ | $\begin{aligned} & -2.2^{b} \\ & (1.1)^{c} \end{aligned}$ | $\begin{gathered} 14.7 \\ (-5.0) \end{gathered}$ | $\begin{gathered} 13.8 \\ (-6.5) \end{gathered}$ | $\begin{gathered} -39.1 \\ (-49.9) \end{gathered}$ | $\begin{aligned} & 25.5^{f} \\ & (8.4)^{g} \end{aligned}$ | -39.6 | -37.4 | -37.6 | -26.2 |
| $6-31+\mathrm{G}^{*} / / 6-31+G\left({ }^{*}\right)$ | $\begin{array}{r} -11.1 \\ (1.6) \end{array}$ |  |  | $\begin{gathered} -0.6^{c} \\ (12.9)^{b} \end{gathered}$ | $\begin{gathered} 21.9 \\ (17.3) \end{gathered}$ |  |  | $\begin{gathered} 32.7 f \\ (30.7)^{g} \end{gathered}$ | -31.6 |  |  | -18.2 |
| $\mathrm{MP} 2 / 6-31+\mathrm{G}^{*} / / 6-31+\mathrm{G}\left(^{*}\right)$ | $\begin{gathered} -12.8 \\ (-5.7) \end{gathered}$ |  |  | $\begin{aligned} & -2.3^{c} \\ & (8.8)^{c} \end{aligned}$ | $\begin{aligned} & 11.5 \\ & (4.5) \end{aligned}$ |  |  | $\begin{gathered} 22.3^{f} \\ (17.9)^{g} \end{gathered}$ | -27.4 |  |  | -14.0 |
| experimental |  | -16 | -36 | -6 |  |  |  |  |  |  |  |  |

[^4]shown in 11. ${ }^{21}$ Two water molecules are now involved directly in the reaction. This transition structure has small $\mathrm{O}-\mathrm{H}$ bond breaking on the perpendicular $\mathrm{H}_{2} \mathrm{O}$ but significant $\mathrm{O}-\mathrm{H}$ bond breaking on the second water. It is about $3.5 \mathrm{kcal} / \mathrm{mol}$ more stable than the transition structure 9 at the MP2 $/ 6-31+G^{*}$ level. This situation is similar to that found for the hydration of carbonyl compounds, where a six-centered transition structure is more stable than a four-centered transition structure. ${ }^{22}$

For the reaction with three water molecules, a similar transition structure, 12, was located with both the $3-21 \mathrm{G}^{*}$ and $6-31+G\left(^{*}\right)$ basis sets. This structure is very similar to structure 6 with the $3-21 \mathrm{G}^{*}$ basis set, and there is only a $0.3 \mathrm{kcal} /$ mol energy difference between the two structures. With the $\left.6-31+G{ }^{*}\right)$ basis set, the transition structure is more advanced and has a higher activation energy. The transition structure is $7 \mathrm{kcal} / \mathrm{mol}$ more stable than the transition structure 10 at the MP2/6-31+G* level of calculation. The calculated activation free energy for the third step of hydration is about $18 \mathrm{kcal} / \mathrm{mol}$, which is still too high for the isomerization to occur in the gas phase.
4. Effect of Hydration on the Formation of the Dihydrogen Orthophosphate Anion. Structures 13 and 14 are dihydrogen orthophosphate hydrated by one and two molecules of water, respectively. Both 13 and 14 have $C_{2}$ symmetry. While 13 is the global minimum for the two-water system, we are not quite certain whether 14 is the global minimum for the three-water system, since many isomeric structures are possible and a thorough search was not carried out. This does not affect our subsequent discussion. The hydration has little effect on the orthophosphate geometry. The exothermicities $\left(\Delta E_{3}\right)$ for the formation of 13 and 14 from 1 and 4 are 25.8 and $27.4 \mathrm{kcal} / \mathrm{mol}$, respectively. We expect these reaction energies to be slightly higher with higher

[^5]

Figure 4. Calculated orthophosphate products for the reactions of the metaphosphate anion with two and three molecules of water. Selected $3-21 \mathrm{G}^{*}$ and $\left.6-31+G \mathbf{(}^{*}\right)$, in parentheses, bond lengths are also shown.
levels of calculations, based on the calculations for the $\mathrm{PO}_{3}-\mathrm{H}_{2} \mathrm{O}$ reaction. Therefore, the reaction enthalpy increases as orthophosphate is more hydrated. This is likely due to reduced electrostatic interactions by the presence of the water molecules.

The calculated reaction entropy $\left(\Delta S_{3}\right)$ for the formation of 12 is about $-35 \mathrm{kcal} / \mathrm{mol} \mathrm{K}$. This is the same as the measured entropy change of the third step of hydration reported by Keesee and Castleman. ${ }^{13}$ However, the calculated enthalpy for the formation of $\mathbf{1 4}$ is about $-25 \mathrm{kcal} / \mathrm{mol}$ with MP2 $/ 6-31+\mathrm{G}^{*}$ level and is significantly larger than that measured for the third step of hydration, which is $-16 \mathrm{kcal} / \mathrm{mol}$. Therefore, it is quite unlikely that the measured abnormal enthalpy and entropy for the third step of hydration are due to the formation of hydrogen orthophosphate.

## Summary

We found that in the gas phase, metaphosphate forms simple ion-molecule clusters with one and two molecules of water. With
more than three molecules of water, a $\mathrm{PO}_{3}-\left(\mathrm{H}_{2} \mathrm{O}\right)_{n}-\mathrm{H}_{2} \mathrm{O}$ adduct can also be formed, where one of the waters is nearly perpendicular to $\mathrm{PO}_{3}{ }^{-}$and behaves as a nucleophile. This structure has been proposed to be an intermediate in the solution hydrolysis of monoester monoanion phosphates. ${ }^{2}$ Thus, thestepwise hydrations of metaphosphate in the gas phase studied by Keesee and Castleman stop at the formation of ion-molecule clusters, and the formation of dihydrogen orthophosphate does not occur. This is supported by the facts that (1) the calculated activation free energy for the reaction ( $18 \mathrm{kcal} / \mathrm{mol}$ ) is too high for a gas-phase reaction and (2) the exothermicity of the formation of orthophosphate is much larger than the experimentally measured enthalpy changes.

The formation of orthophosphate for the $\mathrm{PO}_{3}-\mathrm{H}_{2} \mathrm{O}$ system occurs with a four-centered transition structure, 2. The activation energy with respect to separated $\mathrm{PO}_{3}{ }^{-}$and $\mathrm{H}_{2} \mathrm{O}$ is about $20 \mathrm{kcal} /$
mol. With two or more water molecules, a six-centered transition structure is more favorable than a four-centered transition structure. This six-centered transition structure might be similar to that of the hydrolysis of monoester monoanion phosphate in aqueous solution.

Acknowledgment. We are grateful to Prof. E. M. Evleth (Universite Pierre et Marie Curie) for extensive discussions and Prof. H. F. Schaefer (University of George) for sending us a preprint of his paper on the same subject. We thank the National Science Foundation for financial support. We also thank the IBM Corp. for a grant of computer time on the IBM 3090/600J supercomputer administered through the Office of Academic Computing at UCLA and the Center of Computing Services \& Telecommunications at Hong Kong University of Science and Technology for generous support.


[^0]:    ${ }^{+}$Hong Kong University of Science and Technology.
    $\ddagger$ University of California, Los Angeles.

    - Abstract published in Advance ACS Abstracts, November 15, 1993.
    (1) Part of this work was presented at the 7th International Congress of Quantum Chemistry, Menton, July, 1991.
    (2) Butcher, W. W.; Westheimer, F. H. J. Am. Chem. Soc. 1955, 77, 2420. Barnard, P. W. C.; Bunton, C. A.; Llewellyn, D. R.; Oldham, K. G.; Silver, B. L.; Vernon, C. A. Chem. Ind. (London) 1955, 760.
    (3) For leading reviews, see: Westheimer, F. H. Chem. Rev. 1981, 81, 31. Westheimer, F. H. Science 1987, 235, 1173. Jencks, W. P. Acc. Chem. Res. 1980, 13, 161. Bruice, T. C.; Benkovic, S. J. Bioorganic Mechanisms; Benjamin: New York, 1966; Vol. 2, pp 1-109.
    (4) Rebek, J.; Gavina, F. J. Am. Chem. Soc. 1975, 97, 1591. Samuel, D.; Silver, B. J. Chem. Soc. 1961, 4321. Kirby, A. J.; Varvoglis, A. G. Ibid. 1968B, 135. Ramirez, F.; Maracek, J. F. Tetrahedron 1979, 35, 1581. Satterthwait, A. C.; Westheimer, F. H. J. Am. Chem. Soc. 1981, $103,1177$. Calvo, K. C.; Westheimer, F. H. Ibid. 1983, 105, 2827.
    (5) Skoog, M. T.; Jencks, W. P. J. Am. Chem. Soc. 1984, 106, 7597. Bourne, N.; Williams, A. J. Am. Chem. Soc. 1984, 106, 7591. Buchwald, S. L.; Knowles, J. R.J. Am. Chem. Soc. 1980, 102, 6601. Ramirez, R.; Marecek, J.; Minore, J.; Srivastava, S.; le Noble, W. J. Am. Chem. Soc. 1986, 108, 348.
    (6) Herschlag, D.; Jencks, W. P. J. Am. Chem. Soc. 1989, 111, 7579, 7587; 1990, 112, 1951. Jencks, W. P. Chem. Soc. Rev. 1981, 10, 345.
    (7) Lightcap, E. S.; Frey, P. A. J. Am. Chem. Soc. 1992, 114, 9750.
    (8) Buchwald, S. L.; Friedman, J. M.; Knowles, J. R. J. Am. Chem. Soc. 1984, 106, 4911. Calvo, K. C. J.Am. Chem. Soc. 1985, 107, 3690 . Friedman, J.; Knowles, J. R. J. Am. Chem. Soc. 1985, 107, 6126.
    (9) Lowe, G.; Tuck, S. P. J. Am. Chem. Soc. 1986, 108, 1300. Cullis, P. M.; Nicholls, D. J. Chem. Soc., Chem. Commun. 1987, 783.
    (10) Harven, D. J.; Hass, J. R.; Busch, K. L.; Bursey, M. M.; Ramirez, F.; Meyerson, S. J. Am. Chem. Soc., 1979, 101, 7409. Wormhoudt, J. C.; Kolb, C. E. NBS Spec. Publ. (U.S.) 1979, 561, 457. Freedman, A.; Wormhoudt, J. C.; Kolb, C. E. ACS Symp. Ser. 1982, 179,601 . Unkel, W.; Freedman, A. AIAA J. 1983, 21, 1648 . Meyerson, S.; Harven, D. J.; Hass, J. R.; Ramirez, F.; Maracek, J. F. J. Am. Chem. Soc. 1984, 106, 6877.

[^1]:    (11) Henchman, M.; Viggiano, A. A.; Paulson, J. F.; Freedman, A.; Wormhoudt, J. J. Am. Chem. Soc. 1985, 107, 1453.
    (12) Viggiano, A. A.; Henchman, M. J.; Dale, F.; Deakyne, C. A.; Paulson, J. F. J. Am. Chem. Soc. 1992, 114, 4299.
    (13) Keesee, R. G.; Castleman, A. W., Jr. J. Am. Chem. Soc. 1989, 111, 9015.
    (14) Schaefer et al. have reported a theoretical study of the ion-molecule cluster of $\mathrm{PO}_{3}-\left(\mathrm{H}_{2} \mathrm{O}\right)_{n}$; see: Ma, B.; Xie, Y.; Shen, M.; Schaefer, H. F. J. Am. Chem. Soc. 1993, $115,1943$.
    (15) For previous calculations on metaphosphate see: Lohr, L. L.; Boehm, R. C. J. Phys. Chem. 1987, 91, 3203. Rajca, A.; Rice, J. E.; Streitwieser, A., Jr.; Schaefer, H. F. J. Am. Chem. Soc. 1987, 109, 4189. O'Keeffe, M.; Domenges, B.; Gibbs, G. V. J. Phys. Chem. 1985, 89, 2306. Loew, L. M.; MacArthur, W. R. J. Am. Chem. Soc. 1977, 99, 1019. Beletskii, I. P.; Yatsimirskii, K. B. Zh. Obshch. Khim. 1986, 56, 35; J. Gen. Chem. USSR (Engl. Transl.) 1986, 35, 29.

[^2]:    (16) Frisch, M. J.; Head-Gordon, M.; Schlegel, H. B.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Defrees, D. J.; Fox, D. J.; Whiteside, R. A.; Seeger, R.; Melius, C. F.; Baker, J.; Martin, R.; Kahn, L. R.; Stewart, J. J. P.; Fluder, E. M.; Topiol, S.; Pople, J. A. GAUSSIAN88; Gaussian Inc.: Pittsburgh, PA, 1988. Frisch, M. J. Trucks, G. W.; Head-Gordon, M.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M. A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A. GAUSSIAN92, Revision B; Gaussian, Inc.: Pittsburgh, PA, 1992.
    (17) This includes zero-point energy and vibrational and rotational energies at $298^{\circ} \mathrm{C}$.

[^3]:    (20) The calculations systematically give a larger loss of entropy for the formation of the ion-molecule cluster.

[^4]:    ${ }^{a}$ The thermal energy and entropy used for the $\Delta G$ calculations are those of the corresponding optimized structures. ${ }^{b}$ For structure 5 . ${ }^{c}$ For structure 6. ${ }^{d}$ For structure 9. ${ }^{e}$ For structure 10. ${ }^{f}$ For structure 11. ${ }^{8}$ For structure 12.

[^5]:    (21) We were unable to locate this transition structure with the AM1 and the $3-21 \mathrm{G}^{*}$ basis sets.
    (22) Fraser, R. R.; Kong, F.; Stanciulescu, M.; Wu, Y.-D.; Houk, K. N. J. Org. Chem. 1993, 58, 4431.

